

Quad Low Power RS485 Driver

FEATURES

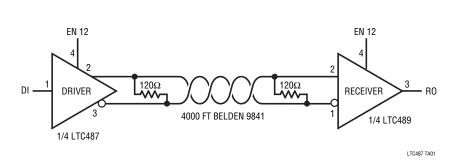
- Very Low Power: I_{CC} = 110µA Typ
- Designed for RS485 or RS422 Applications
- Single 5V Supply
- -7V to 12V Bus Common Mode Range Permits ±7V GND Difference Between Devices on the Bus
- Thermal Shutdown Protection
- Power-Up/Down Glitch-Free Driver Outputs Permit Live Insertion/Removal of Package
- Driver Maintains High Impedance in Three-State or with the Power Off
- 28ns Typical Driver Propagation Delays with 5ns Skew
- Pin Compatible with the SN75174, DS96174, μA96174, and DS96F174

APPLICATIONS

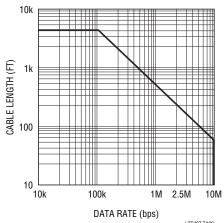
- Low Power RS485/RS422 Drivers
- Level Translator

DESCRIPTION

The LTC®487 is a low power differential bus/line driver designed for multipoint data transmission standard RS485 applications with extended common mode range (–7V to 12V). It also meets RS422 requirements.


The CMOS design offers significant power savings over its bipolar counterpart without sacrificing ruggedness against overload or ESD damage.

The driver features three-state outputs, with the driver outputs maintaining high impedance over the entire common mode range. Excessive power dissipation caused by bus contention or faults is prevented by a thermal shutdown circuit which forces the driver outputs into a high impedance state.

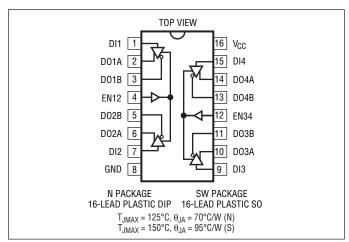

Both AC and DC specifications are guaranteed from 0°C to 70°C (Commercial), -40°C to 85°C (Industrial) and over the 4.75V to 5.25V supply voltage range.

LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

TYPICAL APPLICATION

RS485 Cable Length Specification*

* APPLIES FOR 24 GAUGE, POLYETHYLENE DIFLECTRIC TWISTED PAIR



ABSOLUTE MAXIMUM RATINGS

(Note 1)

Supply Voltage (V _{CC})	12V
Control Input Voltages	$-0.5V$ to $V_{CC} + 0.5V$
Driver Input Voltages	$-0.5V$ to $V_{CC} + 0.5V$
Driver Output Voltages	±14V
Control Input Currents	±25mA
Driver Input Currents	±25mA
Operating Temperature Range	
Commercial	0°C to 70°C
Industrial	40°C to 85°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec	c.)300°C

PIN CONFIGURATION

Consult factory for Military grade parts.

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LTC487CN#PBF	LTC487CN#TRPBF	LTC487CN	16-Lead Plastic DIP	0°C to 70°C
LTC487CSW#PBF	LTC487CSW#TRPBF	LTC487CSW	16-Lead Plastic SO	0°C to 70°C
LTC487IN#PBF	LTC487IN#TRPBF	LTC487IN	16-Lead Plastic DIP	-40°C to 85°C
LTC487ISW#PBF	LTC487IS#TRPBF	LTC487ISW	16-Lead Plastic SO	-40°C to 85°C

Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts.

For more information on lead free part marking, go to: http://www.linear.com/leadfree/For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

DC ELECTRICAL CHARACTERISTICS $V_{CC} = 5V \pm 5\%$, $0^{\circ}C \le T_A \le 70^{\circ}C$ (Commercial), $-40^{\circ}C \le T_A \le 85^{\circ}C$ (Industrial) (Notes 2, 3)

SYMBOL	PARAMETER	CONDITIO	INS	MIN	TYP	MAX	UNITS
$V_{\rm OD1}$	Differential Driver Output Voltage (Unloaded)	I ₀ = 0				5	V
V _{OD2}	Differential Driver Output Voltage (With Load)	$R = 50\Omega$; (RS422)		2			V
		$R = 27\Omega$; (RS485) (Figure 3)		1.5		5	V
V _{OD}	Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	$R = 27\Omega$ or $R = 50\Omega$ (Figure 3)				0.2	V
V _{OC}	Driver Common Mode Output Voltage					3	V
V _{OC}	Change in Magnitude of Driver Common Mode Output Voltage for Complementary Output States					0.2	V
V _{IH}	Input High Voltage	DI, EN12, EN34		2.0		V	
V _{IL}	Input Low Voltage					0.8	V
I _{IN1}	Input Current					±2	μА
I _{CC}	Supply Current	No Load	Output Enabled		110	200	μА
			Output Enabled		110	200	μА
I _{OSD1}	Driver Short-Circuit Current, V _{OUT} = High	V ₀ = -7V			100	250	mA
I _{OSD2}	Driver Short-Circuit Current, V _{OUT} = Low	V ₀ = 12V			100	250	mA
I _{OZ}	High Impedance State Output Current	$V_0 = -7V \text{ to } 12V$			±10	±200	μА

SWITCHING CHARACTERISTICS $V_{CC} = 5V \pm 5\%, \ 0^{\circ}C \le T_A \le 70^{\circ}C \ (Notes \ 2, \ 3)$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
t _{PLH}	Driver Input to Output	$R_{DIFF} = 54\Omega, C_{L1} = C_{L2} = 100pF$	10	30	50	ns
t _{PHL}	Driver Input to Output	(Figures 1, 4)	10	30	50	ns
t _{SKEW}	Driver Output to Output			5	15	ns
t _{r,} t _f	Driver Rise or Fall Time		5	20	25	ns
t _{ZH}	Driver Enable to Output High	C _L = 100pF (Figures 2, 5) S2 Closed		35	70	ns
t _{ZL}	Driver Enable to Output Low	C _L = 100pF (Figures 2, 5) S1 Closed		35	70	ns
t _{LZ}	Driver Disable Time from Low	C _L = 15pF (Figures 2, 5) S1 Closed		35	70	ns
t _{HZ}	Driver Disable Time from High	C _L = 15pF (Figures 2, 5) S2 Closed		35	70	ns

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Note 2: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device GND unless otherwise specified.

Note 3: All typicals are given for $V_{CC} = 5V$ and Temperature = $25^{\circ}C$.

